Разъяснение Numenta


Компания Numenta пытается создать сильный ИИ, копируя структуру новой коры головного мозга — неокортекса.
В этом видео, Siraj Raval рассказывает о том как работает иерархическая система временной памяти (Hierarchical Temporal Memory — HTM). Рассматривает технологический стек HTM и сравнивает его с технологиями глубокого обучения.

( Читать дальше )

Разъяснение Keras


Каков наилучший способ начать глубокое обучение? Разумеется, это библиотека Keras!
Это библиотека высокого уровня для глубокого обучения, которая позволяет очень легко реализовывать модели глубоких нейронных сетей всех видов.

( Читать дальше )

Стрим про капсульные нейронные сети


sim0nsays (Simon Kozlov) рассказывается про идею капсульных нейронных сетей (Capsule Networks (CapsNet)), которую предложил Хинтон, для решения проблем существующих свёрточных нейронных сетей.

( Читать дальше )

Стрим про Reinforcement Learning


Стрим, на котором sim0nsays (Simon Kozlov) рассказывается про AlphaGo(Zero), policy gradients и вообще Deep Reinforcement Learning.

( Читать дальше )

AIY Vision Kit - DIY-проект от Google

AIY Vision Kit
Компания Google, представила маленький DIY-набор на основе Raspberry Pi Zero W.
AIY Vision Kit — это набор из картонной коробки, камеры и специальной платы VisionBonnet, которая несёт на себе Intel® Movidius™ MA2450 — специальный процессор обработки изображений, способный работать с нейронными сетями (позволяет работать со скоростью до 30 кадров в секунду, обеспечивая отличную производительность).

( Читать дальше )

Глубокие нейронные сети как следующий этап развития программного обеспечения

ИНС

Многие люди воспринимают нейронные сети как «ещё один инструмент машинного обучения». У них есть свои плюсы и минусы. Они популярны. И, разумеется, их можно использовать, чтобы выиграть соревнования по машинному обучения (Kaggle).

Однако, Andrej Karpathy (раньше — исследователь из OpenAI, сейчас — директор по ИИ в Tesla), считает, что подобный взгляд на нейронные сети — слишком поверхностен.
Рассматривать нейронные сети, как просто ещё один классификатор — это не видеть леса за деревьями.
На самом деле, современный успех нейронных сетей, представляет собой начало фундаментального сдвига в том, как мы пишем программное обеспечение. Это Software 2.0.

( Читать дальше )

Проблемы применения машинного обучения для решения реальных задач

Deep learning
Машинное обучение (ML), Искусственный Интеллект (AI), нейронные сети (NN) — эти термины в последнее время время не сходят с новостных заголовков и этот шум даже не думает умолкать.
Большие данные, вычислительные мощности графических карт (GPU) и огромное количество научных исследований — позволили глубокому обучению стать технологией меняющей мир.

Доступность фреймворков машинного обучения в виде открытого программного обеспечения, от ведущих исследовательских групп (от крупных компаний: TensorFlow от Google, PyTorch от Facebook, CNTK от Microsoft) позволяют сейчас быстро начать самостоятельно экспериментировать с глубокими нейронными сетями.

Однако, эти возможности, благодаря которым, сейчас очень просто начать тренировать свою собственную Искусственную Нейронную Сетку, могут ввести в заблуждение.
Ведь, чтобы использовать машинное обучение для решения своих задач или задач бизнеса, требуется учесть множество важных нюансов.

( Читать дальше )

Создание покемонов с помощью генеративных состязательных сетей


Генеративные состязательные сети (Generative Adversarial Networks — GAN) — потрясающий тип нейронных сетей, моделирующих генерацию данных.
Много данных для обучения, много параметров и требуемых вычислений, но, в итоге, можно научить нейронную сеть распределению в данных и начать генерировать самые разные целевые данные: покемонов, пиццу и даже лекарства.

( Читать дальше )

Что не так со свёрточными нейронными сетями?


Свёрточные нейронные сети (convolutional neural networks (CNNs)) показывают отличные результаты по распознаванию.
Однако, по словам Хинтона (Geoffrey Hinton), на самом деле очень жаль, что CNN работают так хорошо, потому что у них есть серьёзные недостатки, от которых, по его мнению, «будет трудно избавиться».

Существующие проблемы свёрточных нейронных сетей:

( Читать дальше )

GAN — генеративные состязательные сети

архитектура GAN
GAN — Generative Adversarial Networks — генеративные состязательные сети.

Пока мне не удалось найти устоявшегося русскоязычного названия.
Другие варианты:
генеративные соревновательные сети
порождающие соперничающие сети
порождающие соревнующиеся сети

Генеративные сети — это очень интересный класс нейронных сетей, которые учатся генерировать определённые объекты. Сейчас, подобные сети очень популярны и используются для самых разных задач — от генерирования пугающих картинок и суперразрешения до поиска лекарств от рака.

( Читать дальше )